The Variable Separation Method and Exact Jacobi Elliptic Function Solutions for the Nizhnik-Novikov-Veselov Equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Darboux Transformation and Variable Separation Approach: the Nizhnik-novikov-veselov Equation

Darboux transformation is developed to systematically find variable separation solutions for the Nizhnik-Novikov-Veselov equation. Starting from a seed solution with some arbitrary functions, the once Darboux transformation yields the variable separable solutions which can be obtained from the truncated Painlevé analysis and the twice Darboux transformation leads to some new variable separable ...

متن کامل

Exact Traveling Wave Solution For The (2+1)-Dimensional Nizhnik-Novikov-Veselov (NNV) System

In this paper, we derive exact traveling wave solutions of the (2+1)-dimensional Nizhnik-NovikovVeselov (NNV) system by a presented method. The method appears to be efficient in seeking exact solutions of nonlinear equations. Key–Words: (G ′ G )-expansion method, Travelling wave solutions, (2+1)-dimensional Nizhnik-Novikov-Veselov (NNV) system, nonlinear equation, exact solution, evolution equa...

متن کامل

Series New Exact Solutions to Nonlinear Nizhnik-Novikov-Veselov System Analytical Solution, Fixed Point Theory of Partially Ordered Space

One new solving expression is built for Nizhnik-Novikov-Veselov system in the paper. Through corresponding auxiliary equation arrangement, more than 150 analytical solutions of elementary and Jacobi elliptic functions are obtained so that the NNV system has a wider range of physical meaning. At the same time, the existence and uniqueness of this systematic solution are discussed by fixed point ...

متن کامل

Elastic and Inelastic Interaction Behaviours for the (2+ 1)-Dimensional Nizhnik–Novikov–Veselov Equation in Water Waves

A modified mapping method and new ansätz form are used to derive three families of variable separation solutions with two arbitrary functions of the (2 + 1)-dimensional Nizhnik–Novikov–Veselov equation in water waves. By selecting appropriate functions in the variable separation solution, we discuss interaction behaviours among dromion-pair and dromion-like peakon-pair and dromionlike semifoldo...

متن کامل

Darboux transformation for the modified Veselov-Novikov equation

A Darboux transformation is constructed for the modified Veselov-Novikov equation .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Physica Polonica A

سال: 2006

ISSN: 0587-4246,1898-794X

DOI: 10.12693/aphyspola.110.3